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What do we do? (1)

* We measure labor markets’ exposure to GenAl by imputing the

exposure scores from Gmyrek, Berg and Bescond 2023 (“GBB” from

now on) to 22 household and labor market surveys from Latin America
and the Caribbean (LAC).

* We estimate three exposures types:

 Automation: Occupations where most tasks can be replaced by GenAl.

* Augmentation: Occupations where some tasks could be automated but where
human role remains crucial for the majority of tasks.

* Big Unknown: Occupations that could fall closer to automation or
augmentation depending on the progress of the technology.

* We compute measures of exposure across several socio-economic

characteristics, to provide insights about the potential distributional
impacts of GenAl.



What do we do? (2)

* We build on GBB methods by providing an additional adjustment:
the role of access to digital technologies.

* |n particular, we use the likelihood of using a computer at work to
split each GenAl exposure into two categories:
* Occupation exposed to GenAl and worker uses a computer at work

* Occupation exposed to GenAl and worker does not use a computer at
work

* To our knowledge, this is the first attempt at adapting measures of
GenAl exposure to developing countries.



Motivation (1)

* While there is some variation in terms of GenAl labor market exposure across income levels, the gaps are not

that wide.
* But aggregate estimates hide important within-country differences, which are critical to assess distributional

implications of GenAl exposure (e.g. are rich workers more or less exposed than middle-class ones?)
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Motivation (2)

* While GenAl could bring significant
productivity gains, developing . -
countries can miss such . R S

opportunities if, for example, 80 .':'.:.‘:"" :
workers lack foundational skills or et
access to digital technologies. 501 cre TSt .
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* In addition, existing methods
consider rich and poor countries in
the similar way, and thereby any
differences in GenAl exposure are : * e oo o " "
driven solely by differences in the
occupational structure.
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Why Latin America”? Two important features of the region

High inequality Low labor productivity
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Preview of results

* Overall Exposure:
*  30-40% of LAC employment exposed to GenAl
* Notable inter-country variation influenced by income levels

* Who are more exposed?

* Workers in urban areas, with higher education levels, higher income, and who are formal have more exposure
* Automation exposure is highest among women, young people, and salaried employees

. AugrPentg)tion potential more equally distributed across genders, and higher among high-income, urban, formal jobs (salaried and self-
employe

* Gender: Women have higher exposure to both automation and "the big unknown"
* Age: Younger demographics more exposed overall

Sector profile:
* Banking, finance, insurance, public administration: High automation exposure
* Education, health, personal services: More augmentation potential
* Retail, wholesale trade, restaurant, hotels: Higher exposure to "the big unknown"

Digital Infrastructure and Augmentation:
* Digital access limitations hinder the potential for augmentation transformation
* Approximately half of jobs with augmentation potential unable to benefit due to digital gaps
. These gaps correspond to 6.2% of female employment and 5.9% of male employment
. They add up to 17 million jobs: Some 7 million such jobs are held by women and nearly 10 million are held by men
* Jobs exposed to automation have high levels of digitalization
* Large digital gaps across socio-economic groups



Methods



Overview of GBB (2023) scores (1))

* Gmyrek, Berg and Bescond (2023) estimate scores of exposure
to GenAl for each ISCOO08 4-digit occupation.

* Each ISCO category has a set of tasks attached to it

* They ask ChatGPT to provide a score (and a justification) about
the extent to which each task could be potentially automated
with GPT technology.



Overview of GBB (2023) scores (2)

» Figure 4. Augmentation vs automation potential at occupational level

* Considering an occupation as a gl g I i
collection of tasks with different levels
of exposure to GenAl, they focus on two

parameters: (i) the mean score for a
given occupation, and (ii) its standard ~ :
deviation (SD). |
* Based on these parameters, they :
classify occupations in four groups
(table 5) b Table5:Grouping of cccupations based on asilevel sores




Our paper

GenAl ISCOO08 4-digit exposure Scores from GBB

16 countries with individual response level microdata from SEDLAC
22 countries for overall exposure (SEDLAC + ILO data)

Imputation at the 4-digit level is simple

But SEDLAC has ISCOO08 4-digit for 8 countries, and 2-digit for the remaining
8 countries.

It is not straightforward to apply GBB’s 4-digit scores to 2-digit data.

For countries with 2-digit level data we have two cases:

* If the country has 4-digit level data in ILO, we calculate the exposure measures at the 2-
digoiltl\l/level and impute those to SEDLAC. This is the case for Brazil, Colombia, Costa Rica
an exico.

* If the country does not have 4-digit level in ILO, we impute to SEDLAC the 2-digit level
exposure from a “similar” country using a clustering algorithm. This is the case for
Argentina, Bolivia, Guatemala and Nicaragua



Imputation of GenAl scores (4)

Height

Hierarchical clustering based on ISCO 2-digit shares, GDP(PPP) and total population
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Computer use at work (1)

* Lack of digitalization will likely be an important barrier to GenAl
adoption in developing countries.

* Information about use of digital technologies at work is not typically
collected in HH surveys.

* The PIAAC surveys include a variable on whether workers use a
computer at work.

* We use it to split each GenAl exposure measure between those who
are exposed and use a computer at work, and those who are exposed
but do not use a computer at work.



Computer use at work (2)

Since there are only 4 Latin American countries in PIAAC, we need to impute this
information to countries in SEDLAC.

First, we pooled the microdata of the 35 countries in PIAAC and estimate the
following Logit model for the probability of using a computer at work:

Pr (computer.; = 1) = f(ISCO;;, agec;, female. ;, edu.;, GDP,, internet,, broadband,.)

Second, we use the estimated equation to predict the probability of computer use at
work at the individual level in SEDLAC. The explanatory variables are the same in
PIAAC and SEDLAC.

The probability of not using a computer at work is imply 1-P(computer=1).

Each GenAl augmentation measure can be split in two by multiplying it by
P(computer=1) and 1-P(computer=1).

We carry out some robustness check using data on computer ownership and
internet subscription at home in SEDLAC



Results



Total exposure to GenAl by country

Argentina -
Costa Rica -
Uruguay =
Brazil -
Chile =
Dominican Republic =
Montserrat -
Mexico -
Colombia =
Sunname =
Guatemala -
Belize -

El Salvador =
Peru -
Panama -
Grenada -
Honduras =
Guyana -
Nicaragua -
Bolivia =
Ecuador -
Barbados -

Figure 7. Total exposure to GenAI by country®
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Cross-country findings: automation
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Cross-country findings: augmentation
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Adjusting for the digital divide



The impact of access to digital infrastructure

Figure 10. Jobs with augmentation potential and access to computer at work, based on PIAAC data

. Computer at work - No computer at work ® LAC countries
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Figure 12. Exposure by country, exposure type and access to digital infrastructure
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Exposure across earnings levels

Figure 14. Earnings of occupations exposed to GenAI by employment status (exposure above 25%)

Augmentation & Computer
Size: share of total employment Shading: Exposed share of ISCO-08 2-digit occupations
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* Most of the exposed categories concern jobs around e
what could be defined as middle- and upper-middle .
income jobs, with hardly any occupations showing m2ls 25 SOVIEET g

significant exposure among the low-income jobs.

Self-employed

* |n other words, the first order effects of GenAl are more
likely to benefit people who already have high incomes

Income as % of the median income

and who are in jobs requiring relatively higher skills levels,
while the jobs of the poor are quite likely to remain
outside the immediate effects of this technological
transition.




Figure 13: Exposure by country, type and detailed country-level characteristics
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Robustness check: Imputed Computer Use at Work
vs Household Computer Ownership (SEDLAC)

Share of workers without computer access
(among workers exposed to GenAl augmentation)
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Robustness check: Imputed Computer Use at Work vs
Household Computer Ownership (SEDLAC

Share of workers without computer access
(among workers exposed to GenAl augmentation)
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Final Remarks



Final Remarks

* Studies of labor market exposure to GenAl are largely focused on
rich countries, and thereby their methods should be applied with
caution to developing countries.

 In LAC:

* Nearly half of the jobs that could potentially benefit from GenAl

augmentation are hampered by digital shortcomings that will prevent
them from realizing that potential.

* There are 17 million jobs that could, in theory, experience additional
productivity from the technological transformation with GenAl, but which
will not be in position to do so due to the lack of digital infrastructure.

* Some 7 million such jobs are held by women and nearly 10 million are
held by men.



Final Remarks

* Data requirements to apply the methodology of the paper:

e Survey with ISCO 08 data, ideally at the 4-digit level. If only available at a more
aggregated level, itis important to calculate the exposure scores at such level of
aggregation using a survey from a similar country.

* Imputation of digitalization can be done using the PIAAC data, or using self-
reported information on access to digital technologies in the same survey.

* When assessing the impacts of GenAl in countries at lower levels of
development than LAC (e.g. economies of Sub-Saharan Africa), a
different focus is probably more useful:

* Likely, a negligible share of jobs will be exposed to GenAl

 However, the missing opportunities could be very large if GenAl has the potential

to increase access and lower the cost of key services such as healthcare and
education.
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Green Jobs Article, Replication Package and database

Figure 2 — Green occupations (all types) across the world

Note: share of green occupations as percentage with respect to total employment
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Annex



Comparison of 4-digit microdata coverage of ILO and WB
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